# added by katex parameter

210916

Thu, 2021-09-16
210916
avatar
除非注明,本博客所有文章皆为原创。
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

Review

\(F=ma\) 推出一些东西 动量定理…

最小做用量原理,路径积分

Variational Method(变分法)

differential calculus (\(d\),微分) \(\to\) variational calculus(\(\delta\),变分)

泛函,把函数变一点,区别于之前的微分是\(x+\delta x\)

微分 \[ f(x+\delta x) = (x+\delta x)^2 = x^2 +2 \delta x x + (\delta x)^2 \]

\[ \frac{dx^2}{dx} =2x \]

变分: 函数变化,basis change, eg. Laplace and zeta 作基底

Define: \(\tilde{f}(x) = f(x)+\alpha \eta(x)\) as a set of function(泛函)

\(f(x)\) change little can be written as: \[ f(x) + \delta \eta(x) \] * treat \(f(x)\) as variable, \(f(x)\) self-increasing

\[ \delta \tilde{f}(x) = (f+d \alpha \eta)(x) - f(x) = d \alpha \eta(x) \equiv \frac{\partial \tilde{f}}{ \partial x} d \alpha \]

??? 有些问题,看一下讲义\(f\) 自增然后呢?


Partial derivative:

differential: \[ df(x,y) = \frac{\partial f}{ \partial x} dx + \frac{\partial f}{ \partial y} dy \]

variational, \(F(x,\tilde{y})\):

\[ F(x,y+d \alpha\eta) = F(x,y) + \frac{\partial F}{ \partial \tilde{y}} d \alpha \eta = F(x,y) + \frac{\partial F}{ \partial \tilde{y}} \delta \tilde{y} \]

so we can write:

\[ \delta F(x,\tilde{y}) = F(x,y+d \alpha \eta) - F(x,y) = \frac{\partial F}{ \partial \tilde{y}} \delta \tilde{y} \]

???


Application:

Some problems:


brachistochrone curve(最速曲线)

two points(0,0), and \((x_0,y_0)\)

\[ T=\int dt = \int \frac{dS(y)}{v(y)} = \int_{0}^{x_0} \frac{\sqrt{1+y'^2}}{\sqrt{2gy}} dx \]

同除以\(dx\)

What to do next is get the extreme value of the T.

we don’t know the functions formula, so we change the value of function f, and to see if time will change or not.

Assume \(F(y,y')=\sqrt{\frac{1+y'^2}{2gy}}\)

\[ \delta T = \int_{0}^{x_0} \left[\frac{\partial F}{ \partial y} \delta y + \frac{\partial F}{ \partial y'} \delta y'\right] dx \]

把第二项拆了,分部积分


分部积分: \[ \int f(x) g'(x) dx = \int f(x) dg(x) = g(x)f(x) - \int g(x) f'(x)dx \]


\[ \delta T = \left[\frac{\partial F}{ \partial y'}\delta y \right]_{0}^{x_0} + \int_{0}^{x_0 }\left[ \frac{\partial F}{ \partial y} - \frac{d}{dx}\left(\frac{\partial F}{ \partial y'}\right)\right] \delta y dx \]

delta_xy0

So formula in \([...]\) is 0, which is Euler formula(1st )(Euler Lagrange Formula)

\[ \frac{\partial F}{ \partial y} - \frac{d}{dx}\left(\frac{\partial F}{ \partial y'}\right) = 0 \]

稍微变一下,Euler formula(2nd )

\[ \frac{\partial F}{ \partial x} - \frac{d}{dx} \left(F-y'\frac{\partial F}{ \partial y'} \right) = 0 \]

由于,\(F(y,y') = \sqrt{\frac{1+y^2}{2gy}}\) and \(\frac{\partial F}{ \partial y} - \frac{d}{dx} \left(F-y'\frac{\partial F}{ \partial y'} \right)=0\).

\[ \left(F-y'\frac{\partial F}{ \partial y'} \right)=C=\sqrt{\frac{1+y'^2}{2gy}}\left(1-y'\frac{y'}{1+y'^2}\right) \\ \Rightarrow y(1+y'^2) = c' \]

Assume, \(y'= \cot \alpha\), \(2\alpha=\theta\), we have

\[ x=k(\theta - \sin \theta)\\ y=k(1-\cos\theta) \]

\[ (x,y) = k(\theta,1) - k(\sin\theta,\cos\theta) \]

一个圆在直线上的无摩擦滚动,旋轮线、最速曲线,等时线(球放在任意位置,落到底部的时间相同),是真正的摆线


The Principle of Least Action(最小做用量原理)

From Newton to Lagrange

(Hamilton: phase space)

\(N\) particles with 3 coordinates \(\rightarrow\) 1 point with \(3N\) coordinates

Lagrange’s equation

Define the Lagrangian(拉格朗日量) \(\mathcal{L}\) and action(做用量) \(\mathcal{S}\) as \[ \mathcal{L}(x^{A},\dot{x}^{A}) = T(\dot{x}^{A}) - V(x^{A}) \] * 动能减势能

\[ \mathcal{S}[x^{A}(t)] = \int_{t_i}^{t_f}\mathcal{L}(x^{A}(t),\dot{x}^{A}(t))dt \]